Project organization -------------------- The project is organized as follows: ├── README.md |br| ├── data |br| │ ├── interim <- Intermediate data that has been transformed. |br| │ ├── processed <- The final, canonical data sets for modeling. |br| │ └── raw <- The original, immutable data dump. |br| │ |br| ├── docs <- The Sphinx Documentation. |br| │ |br| ├── models <- Contains saved model as .pkl |br| │ |br| ├── mlruns <- Contains mlflow runs (Our experiment and runs are on the "1" folder) |br| │ |br| ├── notebooks <- Jupyter notebooks |br| │ |br| ├── predictions <- Contains the predictions of the three models as csv files |br| │ |br| ├── conda.yml <- The conda environnement properties |br| │ |br| ├── setup.py <- makes project pip installable (pip install -e .) so src can be imported |br| └── src <- Source code for use in this project. |br| ├── __init__.py <- Makes src a Python module |br| │ |br| ├── features <- Scripts to turn raw data into features for modeling |br| │ │ |br| │ └── build_features.py |br| │ |br| └── models <- Scripts to train models and then use trained models to make predictions |br| │ |br| ├── predict_model.py |br| ├── train_model.py |br| └── train_mlflow.py |br| .. |br| raw:: html